Remote Method Invocation

e Part 1: Alternate RPCs Models

* Part 2: Remote Method Invocation (RMI)

— Design issues

e Part 3: RMI and RPC Implementation and Examples

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

Lightweight RPCs

Many RPCs occur between client and server on same machine

— Need to optimize RPCs for this special case => use a lightweight RPC
mechanism (LRPC)

Server S exports interface to remote procedures

Client C on same machine imports interface

OS kernel creates data structures including an argument stack shared
between S and C

University of
Massachusetts | CS677: Distributed OS Lec. 04
Amherst

Lightweight RPCs

Client process Server process

fd = open(door_name. ..

door_call(fd, ..); —. Reg\ster\c\ﬁio/r/

-

¢ RPC execution

— Push arguments onto stack | opersting sysem
- > " -
. /
- Trap tO keme| Lﬂﬁ'ﬁif?}’féiid door Return to calling process

— Kernel changes mem map of client to server address space

— Client thread executes procedure (OS upcall)

— Thread traps to kernel upon completion

— Kernel changes the address space back and returns control to client
* Called “doors” in Solaris

¢ Which RPC to use? - run-time bit allows stub to choose between LRPC and RPC
University of

Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

Other RPC Models

¢ Asynchronous RPC

— Request-reply behavior often not needed

— Server can reply as soon as request is received and execute procedure later
e Deferred-synchronous RPC

— Use two asynchronous RPCs

— Client needs a reply but can’t wait for it; server sends reply via another asynchronous RPC
e One-way RPC

— Client does not even wait for an ACK from the server

— Limitation: reliability not guaranteed (Client does not know if procedure was executed by the server)

— Multicast RPC
University of
Massachusetts | CS677: Distributed OS Lec. 04
Amherst

call RPC

return

C

Asynchronous RPC

caII RPC response

x - wait for reply - - /

caII local procedure
and return results

call local procedure
return

wait for accept

results

7

callback

call local procedure

and return results
a) The interconnection between client and server in a traditional RPC

b) The interaction using asynchronous RPC

University of
Massachusetts
Amherst

CS677: Distributed OS Lec. 04

Deferred Synchronous and Multicast RPC

* Interactions for (i) two asynchronous RPCs, (ii) multicast RPC

Interrupt client caII local procedure

Waitfor ~ TEETAMPRMERLooooo o T T
. acceptance S1
ClieNt e—
A
Call remote Return callback
procedure from call Return C—calRPC ----- wait for results - - - -
results Acknowledge
Accept callback
Request request
SV B~ ————— s
Call local procedure Time > S
caII local procedure
CaII client with
one-way RPC
University of
Massachusetts | CS677: Distributed OS Lec. 04
Amherst

Part 2:Remote Method Invocation (RMI)

* RPCs applied to objects, i.e., instances of a class
— Class: object-oriented abstraction; module with data and operations
— Separation between interface and implementation
— Interface resides on one machine, implementation on another

* RMIs support system-wide object references

— Parameters can be object references

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst
7
Distributed Object
Client machine Server machine
Object
Client Server &
< State
Same
Client interface L« Method
invokes » as object
a method v / Skeleton ~ | S
E invokes — |
Proxy same method Skeleton
at object A
Client OS Server OS
[|

A .

Network
Marshalled invocation
is passed across network

* When a client binds to a distributed object, load the interface (“proxy”) into client address space
— Proxy analogous to stubs

e Server stub is referred to as a skeleton

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

Proxies and Skeletons

* Proxy: client stub
— Maintains server ID, endpoint, object ID
— Sets up and tears down connection with the server
— [Java:] does serialization of local object parameters

— In practice, can be downloaded/constructed on the fly (why can’t this be done
for RPCs in general?)

¢ Skeleton: server stub

— Does deserialization and passes parameters to server and sends result to proxy

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ...; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(@
Distr_object obj_ref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ...; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy
(b)

A. Example with implicit binding using only global references

B. Example with explicit binding using global and local references

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

10

Parameter Passing

* Less restrictive than RPCs.
— Supports system-wide object references
— [Java] pass local objects by value, pass remote objects by reference
— Local objects: all normal classes; Remote objects: classes with RMIs (UnicastRemoteObject)

Machine A Machine B

Local object "Remote object]
Remote object
. Lo<|:_z:l Remote 02 §
reference reference R1 B

Client code with
RMI to server at C

(proxy) New local ,"
reference Copy of O1 J

Remote A /// \

invocation with -

L1and R1as Dv Copy of R1 to 02

parameters - Server code

Machine C (method implementation)

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

11

Part 3: Implementation & Examples

Java RMI|

CRPC

Python Remote Objects (PyRO)

gRPC

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

12

12

Java RMI

e Server

— Defines interface and implements interface methods

— Server program

» Creates server object and registers object with “remote object” registry

¢ Client

— Looks up server in remote object registry

— Uses normal method call syntax for remote methods

e Java tools

— Rmiregistry: server-side name server

University of
Massachusetts | CS677: Distributed OS Lec. 04 13
Ambherst
13
Interface Client
String host = (args.length < 1) ? null : args[0];
package example.hello; try {
Registry registry = LocateRegistry.getRegistry (host);
import java.rmi.Remote; Hello stub = (Hello) registry.lookup ("Hello");
import java.rmi.RemoteException; String response = stub.sayHello();
System.out.println("response: " + response);
public interface Hello extends Remote { } catch (EXCEPtiOI“ e {) .)
String sayHello() throws RemoteException; System.err.println("Client exception: " + e.toString());
e.printStackTrace();
J }
try {
Server obj = new Server();
Hello stub = (Hello) UnicastRemoteObject.exportObject (obj, 0);
// Bind the remote object's stub in the registry
Registry registry = LocateRegistry.getRegistry();
Server registry.bind("Hello", stub);
System.err.println("Server ready");
} catch (Exception e) {
System.err.println("Server exception: " + e.toString());
e.printStackTrace () ;
University of - }
Massachusetts | CS677: Distributed OS Lec.04 14
Ambherst

14

Java RMI and Synchronization

* Java supports Monitors: synchronized objects
— Serializes accesses to objects
— How does this work for remote objects?
¢ Options: block at the client or the server
* Block at server
— Can synchronize across multiple proxies
— Problem: what if the client crashes while blocked?
* Block at proxy
— Need to synchronize clients at different machines
— Explicit distributed locking necessary
* Java uses proxies for blocking
— No protection for simultaneous access from different clients
— Applications need to implement distributed locking
University of

Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

15

15

C/C++ RPC

e Uses rpcgen compiler to generate stub code; link with server and client C code

[proceures | o —>{ server]
rocecures server stub

4 Q_svce
RPC specilication file

T

Q_clnte J,
| llent I client stub \
ap:IIZ:tlon °°
¢ Q_xdr.c: do XDR conversion

e Sample code in lablet

University of
Massachusetts
Ambherst

CS677: Distributed OS Lec. 04

Binder: Port Mapper

eServer start-up: create port

eServer stub calls sve_register to register prog. #, version # with local port mapper
*Port mapper stores prog #, version #, and port

Client start-up: call cint_create to locate server port

eUpon return, client can call procedures at the server

server
machine

portmapper

register

NN

client
machine

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 04

17

Python Remote Objects (PyRO)

import Pyro5.api

@Pyro5.api.expose
class GreetingMaker(object):
def get_fortune(self, name):
return "Hello, {@}. Here is your fortune message:\n" \

"Behold the warranty —— the bold print giveth and the fine print taketh away.".format(name)

daemon = Pyro5.api.Daemon() # make a Pyro daemon
uri = daemon.register(GreetingMaker) # register the greeting maker as a Pyro object

print(“Ready. Object uri =", uri) # print the uri so we can use it in the client later
daemon. requestLoop() # start the event loop of the server to wait for calls

$ python greeting-server.py
Ready. Object uri = PYRO:obj_fbfd1d6f83e44728b4bf89b9466965d5@localhost:35845

import Pyro5.api

uri = input("What is the Pyro uri of the greeting object? ").strip()
name = input("What is your name? ").strip()

greeting_maker = Pyro5.api.Proxy(uri) # get a Pyro proxy to the greeting object
print(greeting_maker.get_fortune(name)) # call method normally

uri = daemon.register(GreetingMaker) # register the greeting maker as a Pyro object
ns.register("example.greeting", uri) # register the object with a name in the name server

greeting_maker = Pyro5.api.Proxy("PYRONAME:example.greeting") # use name server object lookup uri

University of
Massachusetts | CS677: Distributed OS
Amherst

Lec. 04

18

gRPC

e Google’s RPC platform: now available to all developers
e Modern, high-performance framework

 designed for cloud apps

gRPC Server Ruby Client

Works across OS, hardware and languages

C++ Service

Supports python, java, C++,C#, Go, Swift, Node.js,

Android-Java Client

Uses http/2 as transport protocol

ProtoBuf for serializing structured messages

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

19

Protocol Buffers (ProtoBuf)

» Allow message structure to be defined for communication

* Platform-independent; marshalling/serialization built-in
» Define message structure in .proto file

message SearchRequest {
required string query = 1;
optional int32 page_number = 2;
optional int32 result_per_page = 3;

}

» Use protocol compiler protoc to generate classes

» Classes provide methods to access fields and serialize / parse from raw bytes e.g.,
set_page_number()

» Like JSON, but binary and more compact

e https://developers.google.com/protocol-buffers

University of
Massachusetts | CS677: Distributed OS Lec. 04
Amherst

20

20

https://developers.google.com/protocol-buffers

gRPC Example

* Define gRPCs in proto file with RPC methods

e params and returns are protoBud messages;

// The greeter service definition.
service Greeter {

// Sends a greeting

rpc SayHello (HelloRequest) returns (HelloReply) {}
}

// The request message containing the user's name.
message HelloRequest {
string name = 1;

}

// The response message containing the greetings
message HelloReply {
string message = 1;

}

¢ use protoc to compile and get client stub code in preferred language

¢ gRPC server on server side

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

21

21

dgRPC Features

* Four types of RPCs supported - see https://grpc.io/docs/what-is-grpc/
¢ Unary RPC, server streaming, client streaming, bi-drectional

¢ Unary RPC sends single response message, streaming can send any number of messages

rpc LotsOfReplies(HelloRequest) returns (stream HelloResponse);

rpc LotsOfGreetings(stream HelloRequest) returns (HelloResponse);

e Supports synchronous and asynchronous calls

» Deadlines/timeouts: client specifies timeout, server cn query to figure out how much time is left to
produce reply

e Cancel RPC: server or client can cancel rpc to terminate it

University of
Massachusetts | CS677: Distributed OS Lec. 04
Ambherst

22

22

